IHEKIVUYNAMIG PKOPERTIES OF HELIUM-3 AND HELIUM-4

$(\dot{\partial} S / \partial V)_{T}$ can be obtained from the experimental results by numerical differentiation. By using Mills \& Grilly's $p-V-T$ data and equation (7) we can then obtain the pressure at constant molar volume as a function of temperature, i.e. the isochores

$$
\begin{align*}
p(T) & =p_{m}-\int_{T}^{T_{m}}(\partial S / \partial V)_{T} \mathrm{~d} T, \tag{8}\\
p_{m} & =p\left(T_{m}\right), \quad V=\text { const. }
\end{align*}
$$

The isochores are given in tables 6 and 7 for rounded values of the molar volume. The columns of these tables give immediately the isotherms, i.e. $p=p(V)$ at constant temperature.

Figure 10. The lattice entropy of ${ }^{3} \mathrm{He}$. The numbered lines are lines of constant volume.

$3 \cdot 6 \cdot 2$. Compressibility

We have calculated the compressibility of solid ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ at $0^{\circ} \mathrm{K}$ from the $0^{\circ} \mathrm{K}$ isotherm

$$
\begin{equation*}
\beta=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T=0} . \tag{9}
\end{equation*}
$$

β is given at rounded values of molar volume in table 8 .

3.6.3. Thermal expansion coefficient

The volume thermal expansion coefficient, α, can be obtained from the thermodynamical relation

$$
\begin{equation*}
\alpha=\beta(\partial p / \partial T)_{V} \tag{10}
\end{equation*}
$$

α for solid ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ is given as a function of temperature and molar volume in table 9 .

