THERMODYNAMIC PROPERTIES OF HELIUM-3 AND HELIUM-4 17

 $(\partial S/\partial V)_T$ can be obtained from the experimental results by numerical differentiation. By using Mills & Grilly's *p*-*V*-*T* data and equation (7) we can then obtain the pressure at constant molar volume as a function of temperature, i.e. the isochores

$$p(T) = p_m - \int_T^{T_m} (\partial S / \partial V)_T dT,$$

$$p_m = p(T_m), \quad V = \text{const.}$$
(8)

The isochores are given in tables 6 and 7 for rounded values of the molar volume. The columns of these tables give immediately the isotherms, i.e. p = p(V) at constant temperature.

3.6.2. Compressibility

3

We have calculated the compressibility of solid ⁴He and ³He at 0 °K from the 0 °K isotherm

$$\beta = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T=0}.$$
(9)

VOL. 257. A.

 β is given at rounded values of molar volume in table 8.

3.6.3. Thermal expansion coefficient

All the second s

The volume ther	mal expar	sion coefficient, α , can be ob	otained from the	thermody	namical
relation	ñ	$\alpha = \beta (\partial p / \partial T)_V.$		all a s	(10)

 α for solid ⁴He and ³He is given as a function of temperature and molar volume in table 9.